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1. Backgroud

Many slow-fast (also called multiscale or two-time scales)
system arise from material sciences, chemistry, fluids
dynamics, biology and other application areas, such as

In climate models, where climate-weather interactions may
be studied within the averaging framework, climate being
the slow motion and weather the fast one.
In the chemistry, the dynamics of chemical reaction
networks often take place on notably different times scales,
from the order of nanoseconds (10−9 s) to the order of
several days.
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Averaging principle for SDEs (By Khasminskii, 1968)

{
dX ε

t = b(X ε
t ,Y

ε
t )dt + σ(X ε

t ,Y
ε
t )dWt , X ε

0 = x ∈ Rd ,

dY ε
t = 1

ε f (X ε
t ,Y

ε
t )dt + 1√

ε
g(X ε

t ,Y
ε
t )dWt , Y ε

0 = y ∈ Rd .

Assume that ∃b̄(x) : Rd → Rd , A(x) : Rd → Rd×d :∣∣∣∣∣ 1T
∫ T

0
Eb(x ,Y x ,y

t )dt − b̄(x)

∣∣∣∣∣→ 0, ε→ 0;

∣∣∣∣∣ 1T
∫ T

0
Eσ(x ,Y x ,y

t )σ∗(x ,Y x ,y
t )dt − A(x)

∣∣∣∣∣→ 0, ε→ 0;

where {Y x ,y
t }t≥0 is the unique solution of the frozen equation:

dY x ,y
t = f (x ,Y x ,y

t )dt + g(x ,Y x ,y
t )dWt , Y x ,y

0 = y .

Xiaobin Sun Averaging principle for slow-fast stochastic system



1. Backgroud
2. Main results

3. Idea of Proof

Averaging principle for SDEs (By Khasminskii, 1968)

{
dX ε

t = b(X ε
t ,Y

ε
t )dt + σ(X ε

t ,Y
ε
t )dWt , X ε

0 = x ∈ Rd ,

dY ε
t = 1

ε f (X ε
t ,Y

ε
t )dt + 1√

ε
g(X ε

t ,Y
ε
t )dWt , Y ε

0 = y ∈ Rd .

Assume that ∃b̄(x) : Rd → Rd , A(x) : Rd → Rd×d :∣∣∣∣∣ 1T
∫ T

0
Eb(x ,Y x ,y

t )dt − b̄(x)

∣∣∣∣∣→ 0, ε→ 0;

∣∣∣∣∣ 1T
∫ T

0
Eσ(x ,Y x ,y

t )σ∗(x ,Y x ,y
t )dt − A(x)

∣∣∣∣∣→ 0, ε→ 0;

where {Y x ,y
t }t≥0 is the unique solution of the frozen equation:

dY x ,y
t = f (x ,Y x ,y

t )dt + g(x ,Y x ,y
t )dWt , Y x ,y

0 = y .

Xiaobin Sun Averaging principle for slow-fast stochastic system



1. Backgroud
2. Main results

3. Idea of Proof

Averaging principle says:

X ε → X̄ , in weak sense,

as ε→ 0, where X̄ is the solution of the averaged equation:

dX̄t = b̄(X̄t )dt + σ̄(X̄t )dWt , X0 = x .

where σ̄(x) :=
√

A(x).

If the frozen equation admits a unique invariant measureµx .
Then

b̄(x) =
∫
Rd b(x , y)µx (dy)

σ̄(x)σ̄(x)∗ =
∫
σ(x , y)σ(x , y)∗µx (dy)
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An simple case: If f (x , y) ≡ f (y) and g(x , y) ≡ g(y),

Y ε
tε = y +

1
ε

∫ tε

0
f (Y ε

s )ds +
1√
ε

∫ tε

0
g(Y ε

s )dWs

= y +

∫ t

0
f (Y ε

rε)dr +

∫ t

0
g(Y ε

rε)dW̃r ,

where W̃r := 1√
ε
Wrε is also a Brownian motion.

Based on the uniqueness of solutions of the frozen equation:

Yt = y +

∫ t

0
f (Yr )dr +

∫ t

0
g(Yr )dWr

⇒ P ◦ (Y ε
tε)
−1 = P ◦ (Yt )

−1

⇒ P ◦ (Y ε
t )−1 = P ◦ (Y t

ε
)−1

⇒ lim
ε→0

P ◦ (Y ε
t )−1 = lim

s→∞
P ◦ (Ys)−1 = µ (invariant measure).
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People always care about

X ε → X̄ , ε→ 0.

Convergence in which ways?

Strong sense: Convergence in Lp

Weak sense: Convergence in law

Convergence rate? Whether optimal? In the Wiener noise case

Strong sense:
[
supt∈[0,T ] E|X ε

t − X̄t |p
]1/p

≤ CT ε
1/2

Weak sense: supt∈[0,T ] |Eϕ(X ε
t )− Eϕ(X̄t )| ≤ CT ε
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The main tools:

Khasminskii’s time discretization
Asymptotic expansion of the solutions of Kolmogorov
equation with respect to ε
Poisson equation
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The Khasminskii’s time discretization

A.Y. Veretennikov, On the averaging principle for systems of
stochastic differential equations, Math. USSR Sborn. 1991.

S. Cerrai, A Khasminskii type averaging principle for stochastic
reaction-diffusion equations, AAP, 2009

D. Liu, Strong convergence of principle of averaging for
multiscale dynamical systems, Commun. Math. Sci., 2010

H. Fu, J. Liu, Strong convergence in stochastic averaging
principle for two time-scales stochastic partial differential
equations, JMAA, 2011

W. Wang, A.J. Roberts, Average and deviation for slow-fast
stochastic partial differential equations, JDE, 2012
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B. Pei, Y. Xu, G. Yin, Stochastic averaging for a class of
two-time-scale systems of stochastic partial differential
equations, Nonlinear Anal., 2017

P. Gao, Averaging principle for the higher order nonlinear
Schrödinger equation with a random fast oscillation, JSP, 2018

W. Liu, M. Röckner, X. Sun, Y. Xie, Averaging principle for
slow-fast stochastic differential equations with time dependent
locally Lipschitz coefficients, JDE, 2020

X. Sun, L. Xie, Y. Xie, Averaging principle for slow-fast stochastic
partial differential equations with Hölder continuous coefficients.
JDE, 2021
· · · · · ·
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Asymptotic expansion of the solutions of
Kolmogorov equation with respect to ε

R. Z. Khasminskii, G. Yin, On averaging principles: an
asymptotic expansion approach, SIAM JMA, 2004

C.E.Brehier, Strong and weak orders in averaging for SPDEs,
SPA, 2012

H. Fu, L. Wan, J. Liu, X. Liu, Weak order in averaging principle
for stochastic wave equation with a fast oscillation, SPA, 2018

Z. Dong, X. Sun, H. Xiao, J. Zhai, Averaging principle for one
dimensional stochastic Burgers equation. JDE, 2018
· · · · · ·
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The Poisson equation

E. Pardoux, A. Yu. Veretennikov, On the Poisson equation and
diffusion approximation. AOP, 2001,2003

S. Cerrai, M. Freidlin, Averaging principle for a class of
stochastic reaction-diffusion equations. PTRF, 2009

C.E. Bréhier, Orders of convergence in the averaging principle
for SPDEs: the case of a stochastically forced slow component,
SPA, 2020

M. Röckner, X. Sun, Y. Xie, Strong convergence order for
slow-fast McKean-Vlasov stochastic differential equations, AIHP,
2021

M. Röckner, L. Xie, Diffusion approximation for fully coupled
stochastic differential equations, AOP, 2021
· · · · · ·
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The papers mentioned above mostly considered the Wiener
noise. How about the case of jump noise?

D. Givon, Strong convergence rate for two-time-scale
jump-diffusion stochastic differential systems, SIAM J. Multiscale
Model. Simul., 2007

D. Liu, Strong convergence rate of principle of averaging for
jump-diffusion processes, Front. Math. China, 2012

J. Xu, Lp-strong convergence of the averaging principle for
slow-fast SPDEs with jumps, JMAA, 2017

B. Pei, Y. Xu, J. L. Wu, Two-time-scales hyperbolic-parabolic
equations driven by Poisson random measures: Existence,
uniqueness and averaging principles, JMAA, 2017
· · · · · ·
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However, the above jump noise excludes the α-stable noise,
which has the heavy tail property and has many application in
physics, finance and other fields.

J. Bao, G. Yin, C. Yuan, Two-time-scale stochastic partial
differential equations driven by α-stable noises: Averaging
principles, Bernoulli, 2017

X. Sun, J. Zhai, Averaging principle for stochastic real
Ginzburg-Landau equation driven by α-stable process, CPAA,
2020

Y. Chen, Y. Shi, X. Sun, Averaging principle for slow-fast
stochastic Burgers equation driven by α-stable process. Appl.
Math. Lett. 2020

But, no satisfactory convergence rates were obtained. Question:
What are the optimal strong and weak convergence rates?

Will it depends on the index α? How it depends?
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2. Main results
SDE case: dX ε

t = b(X ε
t ,Y

ε
t )dt + dL1

t , X ε
0 = x ∈ Rd1 ,

dY ε
t =

1
ε

f (X ε
t ,Y

ε
t )dt +

1
ε1/αdL2

t , Y ε
0 = y ∈ Rd2 ,

(1)

where {L1
t }t≥0 and {L2

t } are independent d1 and d2
dimensional isotropic α-stable processes with α ∈ (1,2).
b : Rd1 × Rd2 → Rd1 and f : Rd1 × Rd2 → Rd2 .
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Theorem 1(S., L. Xie, Y. Xie, Bernoulli, 2021)
(i) For any (x , y) ∈ Rd1 × Rd2 , T > 0 and p ∈ [1, α), we have(

E sup
t∈[0,T ]

|X ε
t − X̄t |p

)1/p

≤ Cε(1−1/α). (2)

(ii) For any φ ∈ C2+γ
b with γ ∈ (α− 1,1),

sup
t∈[0,T ]

|Eφ(X ε
t )− Eφ(X̄t )| ≤ Cε, (3)

where X̄ is the solution of the averaged equation:

dX̄t = b̄(X̄t )dt + dL1
t , X̄0 = x , (4)

where b̄(x) =
∫
Rd2 b(x , y)µx (dy).
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SPDE case:
dX ε

t = [AX ε
t + B(X ε

t ,Y
ε
t )] dt + dLt , X ε

0 = x ∈ H,

dY ε
t =

1
ε

[AY ε
t + F (X ε

t ,Y
ε
t )]dt +

1
ε1/αdZt , Y ε

0 = y ∈ H,

(5)
where A is a selfadjoint operator, B,F : H × H → H and
{Lt}t≥0 and {Zt}t≥0 be mutually independent cylindrical
α-stable processes, where α ∈ (1,2), i.e.,

Lt =
∑

k∈N+

βkLk
t ek , Zt =

∑
k∈N+

γkZ k
t ek , t ≥ 0.
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Theorem 2(S., Y. Xie, arXiv:2106.02854, 2021)
(i) For any for any (x , y) ∈ Hη × H with η ∈ (0,1), T > 0,
1 ≤ p < α and small enough ε, δ > 0,(

sup
t∈[0,T ]

E|X ε
t − X̄t |p

)1/p

≤ CT ,δ

[
1 + ‖x‖(1+δ)η + |y |(1+δ)

]
ε1− 1

α . (6)

(ii) For any test function φ ∈ C3
b(H),(x , y) ∈ H × H, r ∈ (0,1),

sup
t∈[0,T ]

∣∣Eφ(X ε
t )− Eφ(X̄t )

∣∣ ≤ Cr ,T ,δ

[
1 + |x |1+δ + |y |1+δ

]
ε1−r , (7)

where X̄ is the solution of the averaged equation.
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Example: Consider dX ε
t = Y ε

t dt + dL1
t , X ε

0 = x ∈ R,

dY ε
t = −1

ε
Y ε

t dt +
1
ε1/αdL2

t , Y ε
0 = 0 ∈ R,

where {L1
t }t≥0 and {L2

t }t≥0 are independent 1-dimensional
symmetric α-stable process.

Thus the solution is given by
X ε

t = x +

∫ t

0
Y ε

s ds + L1
t ,

Y ε
t =

1
ε1/α

∫ t

0
e−(t−s)/εdL2

s .
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Note that the corresponding frozen equation is

dYt = −Ytdt + dL2
t , Y0 = 0

has a unique solution Yt =
∫ t

0 e−(t−s)dL2
s , which admits a

unique invariant measure µ with zero mean.

Thus, the corresponding averaged equation is given by

X̄t = x + L1
t .

As a result, we have for 0 < p < α,

E|X ε
t − X̄t |p = E

∣∣∣∣∫ t

0
Y ε

s ds
∣∣∣∣p .
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Z ε
t :=

∫ t

0
Y ε

s ds =
1
ε1/α

∫ t

0

[∫ t

r
e−

1
ε
(s−r)ds

]
dL2

r .

As a result, the characteristic function of Z ε
t is given by

E
(

eihZεt
)

= exp
{
−
∫ t

0
Cα(1− e−

r
ε )αdr

(
ε1−1/α

)α
|h|α

}
, h ∈ R.

where ψ(x) = −Cα|x |α.

Thus,

E
∣∣∣∣∫ t

0
Y ε

s ds
∣∣∣∣p = Cα,p

[∫ t

0
(1− e−

r
ε )αdr

]p/α (
ε1− 1

α

)p
,

which implies 1− 1
α is the optimal strong convergence rate.
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3. Idea of Proof
Recall that

X ε
t = X0 +

∫ t

0
b(X ε

s ,Y
ε
s )ds + L1

t ,

X̄t = X0 +

∫ t

0
b̄(X̄s)ds + L1

t .

Thus

X ε
t − X̄t =

∫ t

0

[
b(X ε

s ,Y
ε
s )− b̄(X̄s)

]
ds

=

∫ t

0

[
b(X ε

s ,Y
ε
s )− b̄(X ε

s )
]

ds +

∫ t

0

[
b̄(X ε

s )− b̄(X̄s)
]

ds.
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Note that b̄ is Lipschitz continuity, then for p ∈ [1, α),

E

(
sup

t∈[0,T ]

|X ε
t − X̄t |p

)
≤ CpE

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0
b(X ε

s ,Y
ε
s )− b̄(X ε

s )ds
∣∣∣∣p
]

+Cp,TE
∫ T

0
|X ε

t − X̄t |pdt .

By Gronwall’s inequality, we get

E

(
sup

t∈[0,T ]

|X ε
t − X̄t |p

)
≤ Cp,TE

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0
b(X ε

s ,Y
ε
s )− b̄(X ε

s )ds
∣∣∣∣p
]
.
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Now, consider the following Poisson equation with parameter x :

−L2(x)Φ(x , y) = b(x , y)− b̄(x), y ∈ Rd2 , (8)

where L2(x) is the generator of the following frozen equation.{
dY x ,y

t = f (x ,Y x ,y
t )dt + dL2

t ,

Y x ,y
0 = y .

(9)

Denote

Φ(x , y) :=

∫ ∞
0

[
Eb(x ,Y x ,y

t )− b̄(x)
]

dt ,

Then it is easy to prove that Φ(x , y) solves PDE (8).
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Meanwhile, the solution Φ(x , y) satisfy the following estimates:

sup
x∈Rd1

|Φ(x , y)| ≤ C(1 + |y |), sup
x∈Rd1 ,y∈Rd2

‖∇y Φ(x , y)‖ ≤ C,(10)

sup
x∈Rd1

‖∇x Φ(x , y)‖ ≤ Cθ(1 + |y |θ), (11)

‖∇x Φ(x1, y)−∇x Φ(x2, y)‖
≤ C|x1 − x2|γ(1 + |x1 − x2|1−γ)(1 + |y |), (12)

where θ ∈ (0,1], γ ∈ (α− 1,1).
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By Itô’s formula, we have

Φ(X ε
t ,Y

ε
t ) = Φ(x , y) +

∫ t

0
L1(Y ε

r )Φ(X ε
r ,Y

ε
r )dr

+
1
ε

∫ t

0
L2(X ε

r )Φ(X ε
r ,Y

ε
r )dr + Mε,1

t + Mε,2
t ,

where

L1(y)Φ(x , y) := −(−∆x )α/2Φ(x , y) + 〈b(x , y),∇x Φ(x , y)〉;

Mε,1
t :=

∫ t

0

∫
Rd1

Φ(X ε
r− + x ,Y ε

r−)− Φ(X ε
r−,Y

ε
r−)Ñ1(dr ,dx);

Mε,2
t :=

∫ t

0

∫
Rd2

Φ(X ε
r−,Y

ε
r− + ε−1/αy)− Φ(X ε

r−,Y
ε
r−)Ñ2(dr ,dy).
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As a result, it is easy to see∫ t

0
b(X ε

s ,Y
ε
s )− b̄(X ε

s )ds =

∫ t

0
−L2(X ε

r )Φ(X ε
r ,Y

ε
r )dr

= ε
[
Φ(x , y)− Φ(X ε

t ,Y
ε
t ) +

∫ t

0
L1(Y ε

r )Φ(X ε
r ,Y

ε
r )dr + Mε,1

t + Mε,2
t

]
.

Hence, we have

E

[
sup

t∈[0,T ]

|X ε
t − X̄t |p

]
≤CE

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0
L2(X ε

r ,Y
ε
r )Φ(X ε

s ,Y
ε
s )ds

∣∣∣∣p
]

≤Cεp

[
E sup

t∈[0,T ]

|Φ(x , y)−Φ(X ε
t ,Y

ε
t )|p+E

∫ T

0
|L1(Y ε

r )Φ(X ε
r ,Y

ε
r )|p dr

+E

(
sup

t∈[0,T ]

|Mε,1
t |

p

)
+ E

(
sup

t∈[0,T ]

|Mε,2
t |

p

)]
.
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By estimates (10)-(12) and the following estimate:

sup
ε∈(0,1)

E
∫ T

0
|L1(Y ε

r )Φ(X ε
r ,Y

ε
r )|p dr ≤ Cp,T (1 + |x |p + |y |p);

E

(
sup

t∈[0,T ]

|Φ(X ε
t ,Y

ε
t )|p

)
≤ Cp,T (1 + |y |p)ε−

p
α ;

sup
ε∈(0,1)

E

(
sup

t∈[0,T ]

|Mε,1
t |

p

)
≤ Cp(1 + |y |p);

E

(
sup

t∈[0,T ]

|Mε,2
t |

p

)
≤ Cp,T ε

− p
α .

We final obtain

E

(
sup

t∈[0,T ]

|X ε
t − X̄t |p

)
≤ Cp,T (1 + |x |p + |y |p)εp(1− 1

α
).
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Thank you very much!
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